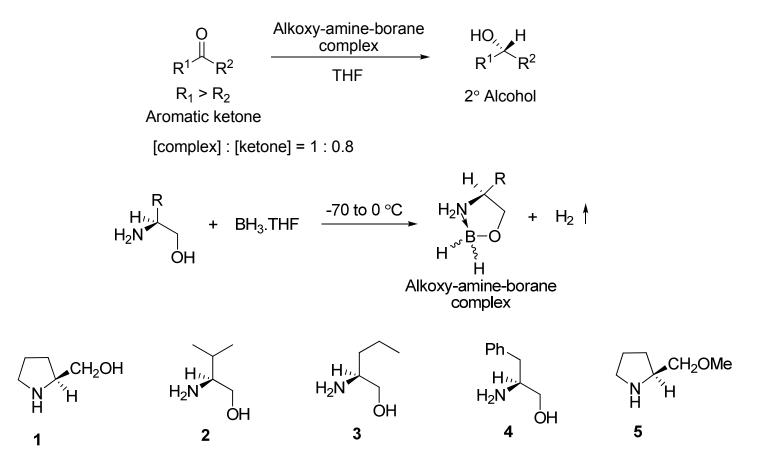



Name Reaction Nilanjana Majumdar 02.27.09

- Introduction
- Background
- CBS Reaction
- Application to Synthesis

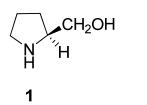
Introduction

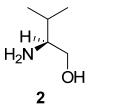
 R^{1-2} = alkyl, aryl; <u>Ligand</u>: THF, Me₂S, 1,4-thioxane, diethylaniline; R^3 = H, alkyl

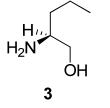


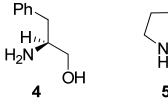
- Born: 12th July, 1928 in Methuen, Massachusetts, USA
- Bachelors Degree in 1948 and Ph. D. in 1951 from MIT
- Faculty in University of Illinois at Urbana-Champaign in 1951
- Faculty in Harvard University in 1959
- Wolf Prize in Chemistry in 1986
- Japan Prize in 1989
- Nobel Prize in Chemistry in 1990 "for his development of the theory and methodology of Organic Synthesis", specifically retrosynthetic analysis
- Priestly Medal in 2004

- Introduction
- Background
- CBS Reaction
- Application to Synthesis

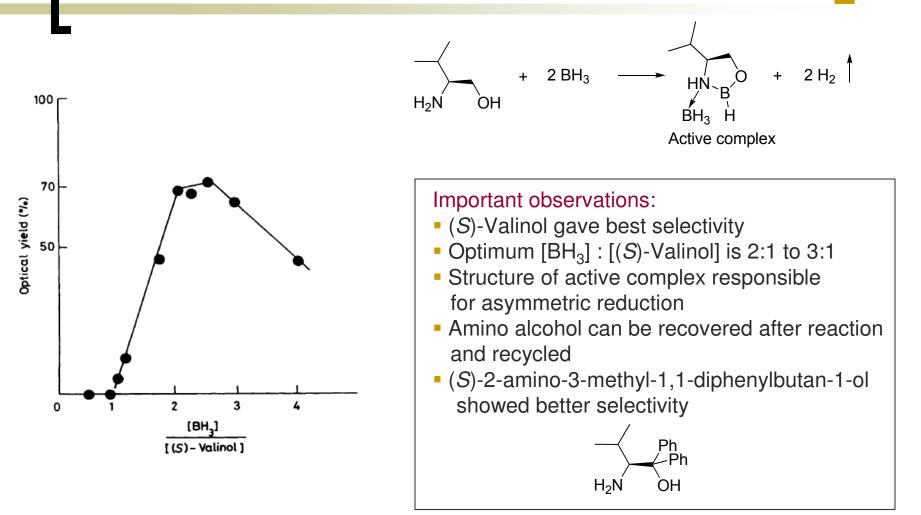

Background


Previous work by Itsuno and co-workers:




Itsuno, S.; Hirao, A.; Nakahama, S.; Yamazaki, N. J. Chem Soc., Chem. Commun. 1981, 315

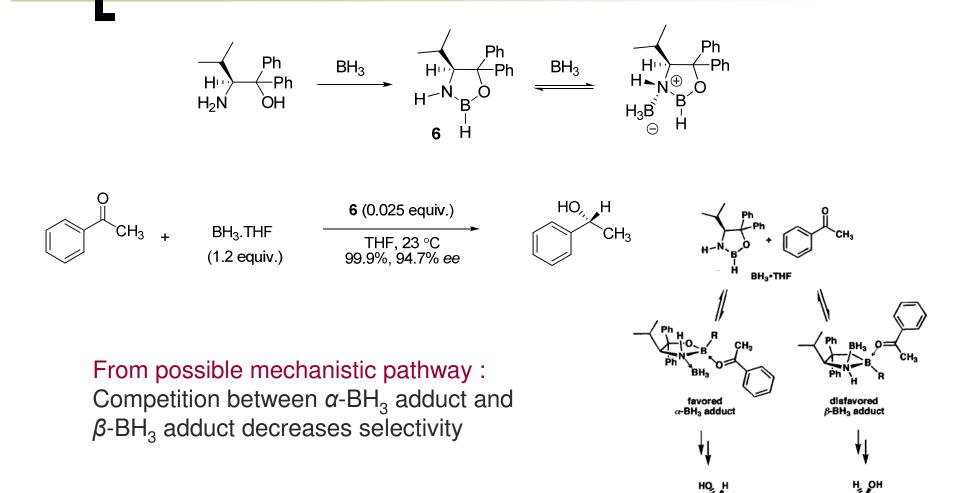
Background


\square	CH ₂ OMe
N H	Ή
5	

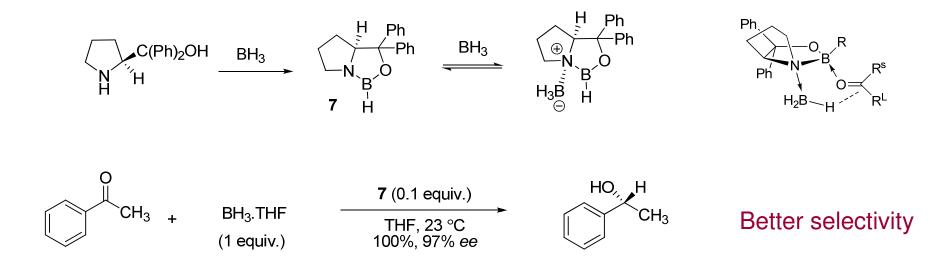
Entry	Amino-alcoho	l Ketone	Solvent	Yield (%)	$[\alpha]_{\mathrm{D}}^{20}/^{\circ}$	Optical yield (%)	Absolute configuration
1	(1)	EtCOPh	THF	99	+20.74	44	(<i>R</i>)
2	(1)	EtCOPh	THF	93	+21.49	46	(R)
3	(1)	EtCOPh	C ₆ H ₆	100	+3.41	7.3	(R)
4	(1)	EtCOPh	MeOH-H ₂ O	100	+7.80	17	(Ŕ)
			(2:1) -				
5	(1)	EtCOPh	CHCl ₃	88	-8.29	18	(S)
6	(1)	MeCOPh	THF	98	+23.30	44	(R)
_7	(2)	MeCOPh	THF	99	+25.60	49	(<u>R)</u>
8	(2)	EtCOPh	THF	99	+27.93	60	(<i>R</i>)
9		3-Naphthyl methyl	THF	93	+21.49	52	(R)
		ketone					
10	(3)	EtCOPh	THF	100	+19.08	41	(<i>R</i>)
11	(4)	EtCOPh	THF	100	+17.59	37	(<i>R</i>)
- 12	(5)	EtCOPh	THF	99	+7.43	16	(R)

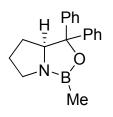
OH group plays an important role

Itsuno, S.; Hirao, A.; Nakahama, S.; Yamazaki, N. J. Chem Soc., Chem. Commun. 1981, 315


Background

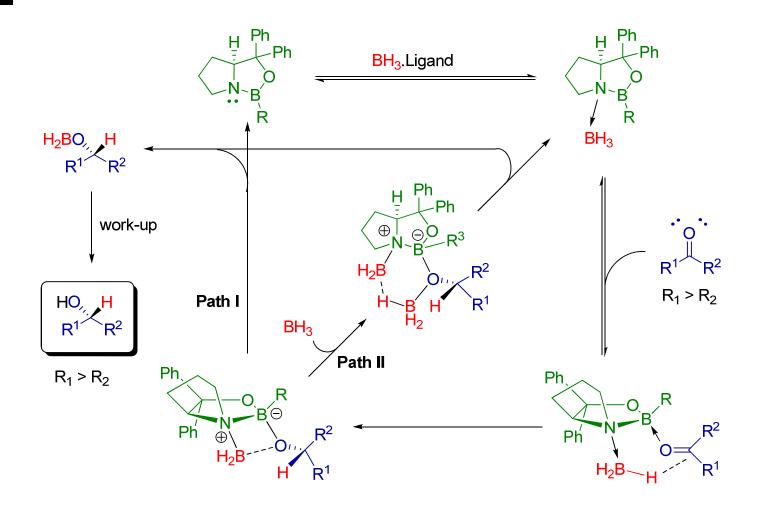
Itsuno, S.; Hirao, A.; Nakahama, S.; Yamazaki, N. J. Chem. Soc. Perkin Trans. 1 1983, 1673


- Introduction
- Background
- CBS Reaction
- Application to Synthesis


Development of CBS Catalyst

Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551

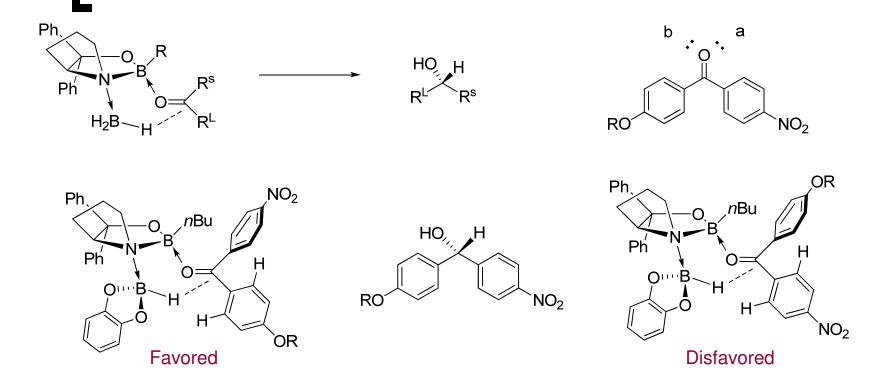
Development of CBS Catalyst



Further improvement in catalyst:

- 1. B-H catalyst is extremely air and moisture sensitive
- 2. B-Me catalyst is less sensitive
- 3. Preparation is easier
- 4. Same or higher enantioselectivity

Mechanism



Scope of CBS Reaction

L	RL R _S -	B-R'-4 → L ₂ BH	HO H RL Rs		- H $Ph F$ Ph	
Ketone	ee [%]	Catalyst	L ₂ BH	<i>T</i> [°C]		
Aryl-alkyl ketone O CH ₃	99	<i>B</i> -Me- 4	BDEA	30	(B-R'-4)	
CH3	99.7	<i>B-n</i> Bu- 4	СВ	-78	Abbreviations	
	99	<i>B</i> -Me- 4. BH ₃	BMS	30	$BDEA = BH_3$.diethylaniline CB = Catechol borane BMS = BH_3.Me_2S	
Diaryl ketone	95	<i>B-n</i> Bu- 4	СВ	-78 —	Electronic Effect	
MeO BF ₃	93	<i>B-n</i> Bu- 4	СВ	-78	_	

Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. Engl. 1998, 37, 1986

Explanation for Electronic Effect

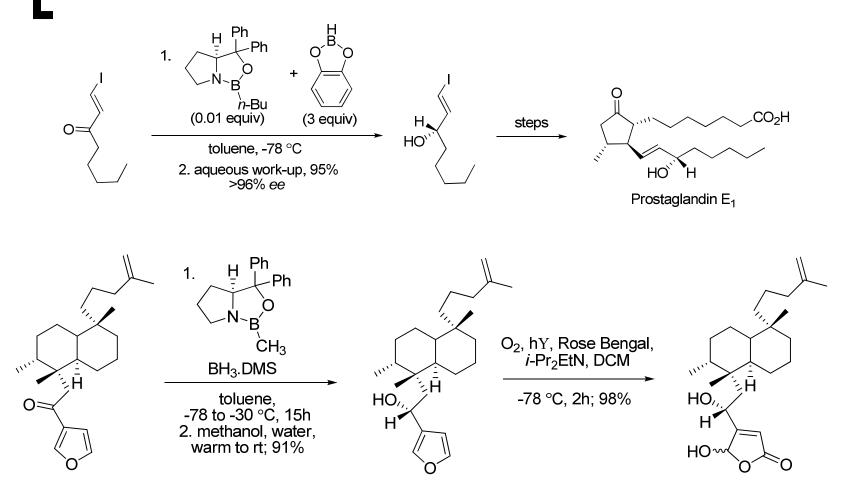
Reasons for the favored intermediate:

- +R effect makes ketone-boron coordination stronger
- I effect makes carbonyl carbon more nucleophilic

E. J. Corey, C. J. Helal, *Tetrahedron Lett.* **1995**, *36*, 9153

Scope of CBS Reaction

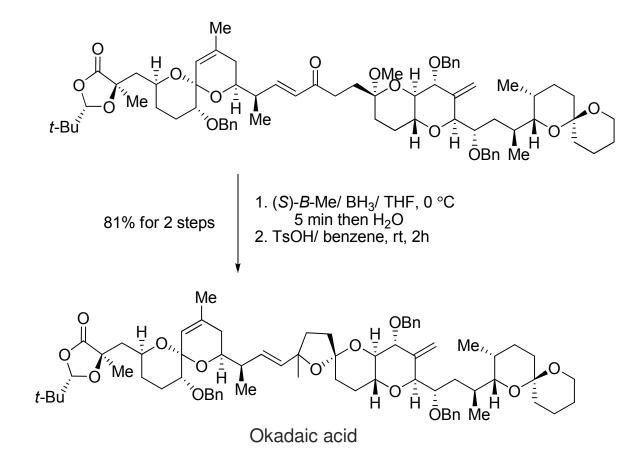
	R _L R _S -	B-R'-4 ► L ₂ BH	HO H RL Rs		– <u>H</u> Ph
Ketone	ee [%]	Catalyst	L ₂ BH	<i>T</i> [°C]	- Ph
$\begin{array}{cc} R_{L} & R_{S} \\ \text{Cyclic } \alpha, \beta \text{-enone} \\ & & O \\ & & Ph \end{array}$	96	<i>B</i> -Me- 4. BH ₃	BMS	-20	N-B' R' (B-R'-4)
Acyclic α,β -enone Ph CH ₃	97	<i>B-n</i> Bu -4	СВ	-78	Abbreviations
Dialkyl ketone	97.4	<i>B</i> -Me- 4	BDEA	20	$BDEA = BH_3$.diethylaniline CB = Catechol borane
	≥99	<i>B</i> -Me- 4	BDEA	20	$BMS = BH_3.Me_2S$
Ketones in ligands of metal complexes O $(OC)_3Cr$	98	<i>B-n</i> Bu -4	СВ	-40	


Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. Engl. 1998, 37, 1986

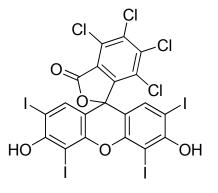
Advantages of CBS Catalyst

- Ease of preparation
- Air and moisture stability
- Short reaction time
- High enantioselectivity
- Typically high yields
- Recovery of catalyst precursor by precipitation as the HCl salt
- Prediction of the absolute configuration from the relative steric bulk of the two substituents attached to the carbonyl group

- Introduction
- Background
- CBS Reaction
- Application to Synthesis


Application to Synthesis

Dysidiolide


Rodriguez, A.; Nomen, M.; Spur, B. W. Godfroid, J.-J. *Eur. J. Org. Chem.* **1999**, 2655 Corey, E. J.; Roberts, B. E. *J. Am. Chem. Soc.* **1997**, *119*, 12425

Application to Synthesis

Sabes, S. F.; Urbanek, R. A.; Forsyth, C. J. J. Am. Chem. Soc. 1998, 120, 2534

Rose Bengal

Rose Bengal is also used in synthetic chemistry to generate singlet oxygen from triplet oxygen. The singlet oxygen can then undergo a variety of useful reactions, particularly [2 + 2] cycloaddtion with alkenes and similar systems.

Optical Yield

In a chemical reaction, the ratio of the enantiomer excess (ee) of the product over the enantiomer excess (ee) of the starting material is called the optical yield.

% Optical yield = (*ee*_{product} / *ee*_{starting material}) x 100%

If the reaction is stereospecific and no racemization occurs, the optical yield is 100%.